La adhesión celular a la nanoescala es un factor clave para la producción de cartílago 'in vitro', según un estudio

La adhesión celular a la nanoescala es un factor clave para la producción de cartílago in vitro
La adhesión celular a la nanoescala es un factor clave para la producción de cartílago in vitro - IBEC
Publicado: viernes, 28 agosto 2020 13:01


MADRID, 28 Ago. (EUROPA PRESS) -

Investigadores del Instituto de Bioingeniería de Cataluña (IBEC), en colaboración con el CIBER-BBN, han desarrollado una metodología basada en estructuras de nanopatrones que mejora la diferenciación de células madre mesenquimales a cartílago 'in vitro'. Este avance se podrá aplicar a las técnicas de regeneración del cartílago con el objetivo de tratar lesiones.

La Organización Mundial de la Salud (OMS) estima que más de 300 millones de personas en el mundo sufren artrosis cada año. Esta enfermedad comporta la rotura progresiva y la degradación del cartílago en las articulaciones, que conduce a un dolor crónico y a una movilidad reducida. Uno de los métodos que actualmente existen para reparar estas lesiones es la implantación de condrocitos (células de cartílago) extraídas del paciente.

Sin embargo, esta técnica está limitada por la etapa de expansión celular requerida para generar tejidos suficientemente grandes para rellenar la lesión, puesto que muy a menudo los condrocitos se desdiferencian durante el cultivo.

Ahora, el grupo de investigación Nanobioengineering del IBEC, dirigido por el profesor Josep Samitier, jefe de grupo del CIBER-BBN publica en la revista 'International Journal of Molecular Sciences' un estudio que trata de la generación de cartílago in vitro utilizando células madre mesenquimales humanas (MSCs). Estas células se tienen que pre-diferenciar in vitro para guiar con éxito la diferenciación hacia condrocitos cuando se insertan en el paciente, un proceso que se puede controlar mediante el ajuste preciso de la adhesión celular al sustrato durante el cultivo celular.

Las MSCs son células multipotentes que se diferencian, entre otros, en condrocitos. La formación de cartílago empieza con la condensación de las células mesenquimales que migran unas hacia las otras para formar agregados celulares tridimensionales. En este trabajo, la condensación mesenquimal se mejoró ajustando el nivel de adherencia entre MSCs y el sustrato a la nanoescala. Esto promueve la migración direccional de células, contribuye a la estabilidad mecánica de los agregados celulares y mejora las interacciones célula- célula, conduciendo a una mejor formación del cartílago in vitro. Los investigadores utilizaron MSCs derivadas de tejido adiposo humano, una fuente fácilmente accesible para potenciales aplicaciones clínicas.

El grupo del profesor Samitier ha utilizado nanopatrones, sustratos para el cultivo celular, de RGD (una secuencia tripeptidica que existe en varias proteínas de la matriz extracelular y es responsable de la adhesión celular) para controlar y modificar la adhesión de las MSCs durante las primeras etapas de la formación del cartílago. Mediante la modificación de la cantidad y del espacio entre los motivos RGD en los nanopatrones, determinaron que hay más diferenciación cuando se utilizan nanopatrones S90 (aquellos que presentan el 90 por ciento de su superficie con una distancia entre los motivos RGD inferior a 70 nm).

Estos nanopatrones biocompatibles, previamente desarrollados en colaboración con el Laboratorio de Dendrímeros Biomiméticos y Fotónica del Centro Andaluz de Nanomedicina y Biotecnología (Bionand), permiten ajustar la adhesión célula-sustrato y se pueden generar en grandes superficies, siendo por lo tanto compatible con el cultivo de tejidos.

Resultados anteriores del grupo indican que los nanopatrones S90 aceleran el proceso de diferenciación in vitro. Los nuevos hallazgos muestran que se necesitan niveles de adhesión altos para promover la condensación y viabilidad de los agregados de MSCs, destacando la importancia de controlar la adhesión célula-sustrato en las estrategias de ingeniería de tejidos para la reparación del cartílago.